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Introduction 

The Great Ethiopian Renaissance Dam Project, GERD Project, is located on the Blue Nile close to Abay, in Ethiopia, 

a few kilometers upstream of Roseires Dam, in Sudan (Fig.1).  

The reservoir will have a total capacity of about 75 billion of cubic meters and will be created by means of the 

construction of two dams: the Main Dam and the Saddle Dam. The power plant will have about 6 GW of installed 

power. The Main Dam is founded on rock and the Saddle Dam is founded mainly on residual soils. This paper 

describes the method used to estimate the geotechnical parameters of the residual soils in the foundation site of the 

Saddle Dam. 

The saddle dam is a bituminous faced rockfill dam, BFRD, 5 km long and about 70 m high. Its highest typical 

section is shown in Fig. 2. 

The main geological formations of the foundation area are three: schists, femic rocks, granites. Schits are also 

present with characteristics of phillite. The geomorphology indicates that between the two hills of the dam shoulders, 

constituted of schist on the left side and granite on the right one, the foundation material derives from the highly 

decomposed base rock. The dam is founded on residual soil for a length of 3.6 km, and for the remaining portion is 

founded on rock. 

In the early stages, a seismic tomography campaign indicated that the depth of residual soils varies between 0 and 20 

m, with a maximum depth of 40 m in the phillitic formation. The following investigation including trenches 

excavation, boreholes, permeability tests, in-situ tests including Marchetti dilatometer (DMT), Menard pressuremeter 

(PMT), plate load tests (PLT) and laboratory tests were carried out to gather information about the geotechnical 

properties of residual soils in the foundation area. 

The authors present the findings of the general geology of the foundation area and the results of the interpreted 

mechanical properties obtained using different tests. 

1. Methodology

The approach used to define the geotechnical design parameters of residual soils is the following. 

1. More than ten big trenches with different height, varying between 10 and 17 meter and with vertical side-wall,

have been excavated. Some trenches, the deepest one too, have been exposed to two rainy seasons without any

collapse, resulting in a high values of cohesion. Their mechanical behaviour have been simulated by means of

Mohr-Coulomb model, and their stability analysis considering a safety factor equal to 1.1, have permitted to

define the minimum values of shear resistance of the residual soils.

2. Twenty DMT profiles and more than ninety PMT tests have been performed until 15 m of depth. The DMT has

been performed inserting the blade dynamically, instead of the more common static way, due to the high shear

resistance of the material. In all profiles DMT ‘feels’ this materials like a silty-sand or sandy-silt, thus like a

non- cohesive material, providing the friction angle as shear resistance parameter. This means that the

interpreted friction angle represents the shear resistance of the material including the cohesion contribute and the

friction contribute.

3. Due to the very low degree of saturation, it can be assumed that the soil is in a fully drained condition. In

addition with the hypothesis that the residual friction angle of the material is equal to its peak friction angle, it is

possible distinguish the contribute of cohesion from that one of friction angle. So reinterpreting the DMT data

under this hypothesis and considering the Mohr-Coulomb failure criterion, it is possible to obtain the two

parameters, c’ and φ’, of the materials directly from in situ test.



4. The direct shear tests, executed in laboratory, were used to verify the validity of the hypothesis and to make a 

comparison between the c’ and φ’ parameters interpreted by means of in situ tests and those coming out from 

laboratory. Despite the anisotropy of the residual soils, it is possible to mark the linear variation of cohesion with 

depth and the good agreement with the in situ estimated drained cohesion. 

 

 
Fig. 1. Map showing location of the GERD project along the blue Nile, Ethiopia. 

 

 
Fig. 2 - GERD project, saddle dam, TYPICAL CROSS SECTION ch. 3+500 

 

2. Geology 

The basic geological formations of saddle dam site, shown in Fig. 3, from left to right, are:  

 SCHIST    with a narrow vein of quartzite (green zone); 

 FEMIC  rocks, highly decomposed into residual soil, from 5 up to 20 m of depth (cyan zone);  

 PHILLITE   highly decomposed and crossed by large intrusion of marble, up to 40 m of depth (orange zone); 



 GRANITE with a narrow vein of quartzite at the interface Phyllite/Granite present in the dam foundation area 

with different weathering degree (decomposed / weathered / fresh), from 10 up to 0 m of depth (magenta zone). 

The presence of deep residual soil strongly affected the design of the dam. The highest typical cross section, Fig. 2, 

shows that the residual soil will be excavated only along the upstream and downstream toes in order to reach a soil 

level with adequate shear resistance and stiffness. 

 

 

 

Fig. 3 - GERD project, saddle dam, GEOLOGICAL PLAN  

 

3. Trench Excavation 

Fig. 4 (left) shows the vertical side-walls of the deepest excavated trench, 17 m deep, and (right) a particular of the 

soil structure. The material is similar to a high, over-consolidated clay or a soft rock. Its stability, after two rainy 

seasons, implies a large cohesion. 

Adopting the Mohr-Coulomb failure criterion, considering a safety factor of 1.1 in the stability analysis and a 

cohesion constant with depth, with the back analysis it has been possible to define the minimum value of shear 

resistance of the residual soils for the three formations. 

Moreover, the operation of trench excavation has permitted the formation of several large soil heaps from which to 

measure the angle of natural repose, ANR, of the remoulded soil. This parameter assumes an important role in the 

investigation, providing the key to conceiving a method to estimate the drained parameters, c’ and φ’, in dry residual 

soils from in situ tests. 

 

4. Identification Tests 

Many samples were taken during trench excavation to execute identification tests for the different geological 

formations. The samples taken manually, directly from the side-walls of trenches, were treated in the site laboratory. 

The samples taken by means of a triple core bit mounted on a drill rig were treated in an external laboratory for 

executing the shear tests.  

The identification tests performed are: unit weight, natural water content, specific gravity, degree of saturation, 

grading and plasticity. The summary of the results are plotted in Figs. 5 and 6.  



Grading curve indicates that D100 rarely exceeds a few millimetres and the percentage of fines varies in the range of 

50 - 80 %. Plasticity chart shows that most of data points are located along the “A line” with plasticity index in the 

range 5 - 25. The degree of saturation is very low, less than 35 %.  

 

The residual soils, in remoulded state, can be classified according the USCS as: 

 

Class USCS Description 

FEM 

PH 

GR 

SC / SM 

SM / ML 

SM 

sandy clay / silty sand 

silty sand /  silt of low plasticity 

silty sand 

Table 1 – USCS Residual Soil Classification 

 

  

 

Fig. 4 - Trench in Phillitic formation 

 

 
 

Fig. 5 – Residual soils grading from femic and phillite 

 
 

Fig. 6 – Plasticity Index summary graph 
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5. In Situ Tests 

During the selection of in situ tests to use for the investigation, SPT and CPT were discarded. The quality of the 

results of SPT tests are not significant because this test is strongly influenced by the type of equipment, the operator 

and the site characteristics. In addition, with the CPT test it is not possible to reach the required depth, about 10-15 

m, by means of the static thrust of a ballasted penetrometer, due to the stiffness and strong resistance of the residual 

soils. 

The chosen in situ tests were Menard pressuremeter (Menard, 1956), PMT, and Marchetti dilatometer (Marchetti, 

1980), DMT. The plate load test, PLT, was also executed because it is a simple test to perform, easy to control and 

does not require any calibration. In contrast it requires the excavation of a large trench in order to collect only few 

test data as a function of depth. The limit of this test is identified in the disturbance induced in the soil during the 

excavation phase for the preparation of the test area. The PLT has been adopted to provide a common basis of 

comparison for the PMT and DMT which estimate the stiffness of the soil also, in order to confirm the accuracy of 

PMT and DMT. 

Both PMT and DMT  have been performed to estimate the mechanical properties of soils, in particular the 

oedometric modulus, M, and the angle of shear resistance in the hypothesis that the material is purely frictional 

(c’=0). Of course considering the high value of cohesion highlighted by the trenches stability, the friction angle 

estimated by PMT and DMT contains the friction contribute and the cohesive contribute of the shear resistance. For 

this reason the friction angle provided by in situ tests has been indicated with the symbol φ* in the diagrams. 

A first comparison of the geotechnical interpreted parameters can be made observing in the unit weight, γ, estimated 

from DMT and measured in laboratory (Fig. 7), and the oedometric modulus, M, from different in situ tests (Fig. 8).  
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Fig. 7 – Unit weight from DMT and LAB  

 

The unit weight estimated by DMT varies in a narrow interval with respect to that one obtained in laboratory. It 

seems quite similar for the different formations. 

As shown in Fig. 7, for the dam design it has been assumed a unit weight equal to: 

 19,5 kN/m
3
 for up to 4 m of depth; 

 20,5 kN/m
3
 for depth over 4 m; 
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Fig. 8 – Oedometric modulus from in situ tests 

 

The oedometric modulus ranges in the same interval for all the formations. A certain scattering can be noticed in the 

data due to the anisotropy, caused by developing of the weathering phenomenon. In particular the PMT seems to 

provide lower values than DMT and PLT, mostly in phillitic formation. The modulus from laboratory results very 

low, at least one order of magnitude less, affected by disturbance in sampling and transportation. It can be assumed 

that oedometric modulus varies linearly with the depth from a minimum of 200 MPa @ 4 m to a max of 500 MPa @ 

12 m. The equation is: M (MPa) = 30xZ(m)+80 MPa 

 

6. Drained Parameters, c’ and φ’, From In Situ Tests 

In residual soil, weathering phenomenon can be defined as the physical, chemical and biological reactions that 

decompose a rock massif in increasingly smaller grains with lesser attraction forces between them. This means that 

the cohesion highlighted by the stability of the deep trenches is not similar to that one of an alluvial soil (Vaughan, 

1988). 

Considering the residual soil as a solid matrix material, instead of a mass of granular sediments joined all together, it 

is possible to formulate the hypothesis that the shear resistance is mainly given by the cohesion and, after the 

mechanical collapse of the main structure, the peak friction angle of the material is the same of the residual one. It 

follows that the residual friction angle can be expressed by the angle of natural repose, ANR, already determined in 

situ during the trenches excavation. 

 

The very low degree of saturation of the soil, Sr < 35%, allows to consider the DMT and PMT in situ tests fully 

drained. This assumption, with the previous hypothesis and adopting the Mohr-Coulomb failure criterion, allows the 

drained cohesion from the DMT data to be estimated. 

 

The cohesion for the residual soil of the three geological formations has been obtained from the DMT using the three 

steps, illustrated in the Fig. 9: 

1. At the considered depth draw, on the Mohr Coulomb plane, the straight line of failure φ* starting from axes 

origin, obtained from DMT; 

FEM_d PH_d GR_d 



2. From the vertical effective stress value, estimated by DMT, draw the Mohr’s circle, tangent to the straight line 

and with horizontal effective stress greater that the vertical one. This last condition descend by the fact that Kd 

parameter of DMT, similar to the over consolidation ratio, OCR, indicates that the material is like an over-

consolidate material. 

3. Draw the tangent to the Mohr circle , with slope equal to ANR, and read the c’ on the intercept with the vertical 

axis. 

 

 
(1) 

 
(2) 

 
(3) 

 

Fig. 9 – Determination of cohesion from DMT test 

 

7. Laboratory Direct Shear Test 

The direct shear test has been chosen, for its simplicity and reliability with respect to the triaxial test, to verify in 

laboratory the method used to estimate the drained parameters of shear resistance from in situ tests. Starting from a 

total number of 25 samples, only 16 resulted of high quality class. Due to the anisotropy of the material every test 

was conducted shearing five specimens for each sample, instead of three. 
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Fig. 10 – Friction angles from in situ and laboratory tests 
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Fig. 11 – Cohesions from in situ and laboratory tests 

The tests have proven that the peak friction angle is quite similar to the residual friction angle, discarding by no more 

than 1-2 degrees. This result can be assumed to be a good confirmation of the hypothesis, considering the difficulty 

in taking good quality samples with triple core bit equipment. 

The cohesion measured in the direct shear test is in the same range of variation of the values estimated by means of 

ANR and DMT tests. 

Figs. 10 shows the field values of friction angle ANR, measured in situ on the heaps, the friction angle φ*, as 

interpreted in situ by PMT and DMT, and the peak friction angle φ’, measured in laboratory. It can be noted that 

ANR and φ’ are in the same range, and that φ* is greater than φ’ as expected because it ‘contains’ the contribution of 

cohesion. 

 

Fig. 11 plots the variability of cohesion with depth from:  

 the back analysis of trenches;  

 the DMT data elaborated as a function of ANR, according to the approach of Fig. 9;  

 laboratory shear tests. 

It can be noted that the cohesion estimated by DMT for the phillite formation, is a little bit lower than that measured 

in laboratory. This is probably due to an over estimation of ANR in phillite, visible in the comparison of ANR and φ’ 

from laboratory (Fig. 10). 

These results seem to confirm the possibility to estimate c’ and φ’ parameters from in situ tests, especially from 

DMT test, in a dry residual soil. 
 

8. Conclusions 
Based on the test results and on experience of other researchers, the following conclusions are drawn. 

 PMT and DMT tests have provided good quality data for the geotechnical interpretation of both stiffness and 

resistance of the residual soils. 

 The scattering in data are representative of the anisotropy of the material, due to the different degree of 

weathering phenomenon both in vertical and in horizontal direction. 

 A method to estimate the Mohr-Coulomb parameters, c’ and φ’, has been proposed. It is based on the data 

carried out in situ from trenches excavation and DMT tests, when the degree of saturation of the residual soil is 

very low. 



 The comparison between the stiffness of residual soil, estimated by DMT and PMT, is in good agreement with 

that one estimated by PLT test. 

 The comparison between the Mohr-Coulomb parameters, c’ and φ’, estimated by DMT and those estimated by 

laboratory tests seem to be in good agreement. 

 The proposed method is inexpensive and time-saving, compared to the costs and time necessary to obtain the 

same results by laboratory tests. Then it has important implications in the foundation design step, offering a 

large quantity of data to better characterize the anisotropy of the material. 
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