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Abstract

The paper summarises the experience gained by the writers in the interpretation of
the cone penetration test (CPT) and flat dilatometer test (DMT) for the assessment of
the geotechnical properties of sands. In the first part of the paper, the problem of
determining the relative density (Dg) as function of the penetration test results and
ambient stress (c”), for silica sands, is dealt with. In the second part of the paper, the
assessment of the peak angle of shearing resistance (¢’p) is dealt with. The attention
is given to the use of the Bolton’s (1986) strength-dilatancy theory in order to
estimate ¢’,. Engineering correlations, based on Bolton’s (1986) work, are proposed
allowing estimation of ¢’, as function of penetration resistance and ¢’, taking into
account the compressibility and the curvilinear shear strength envelope.

Introduction

The concept of relative density (Dr) suggested by Burmister (1948), despite its
intrinsic uncertainties and limitations [Tavenas and La Rochelle (1972), Tavenas
(1972), Achintya and Tang (1979)], is still extensively used in geotechnical
engineering as an index of the mechanical properties of coarse grained soils. Because
of the well-known difficulties and the high costs in retrieving good quality
undisturbed samples from sand and gravel deposits [Yoshimi et al. (1978), Hatanaka
et al. (1988), Goto et al. (1992), Yoshimi (2000)], geotechnical engineers need to
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estimate the in situ Dr using empirical correlations between this parameter and
penetration test results. This indirect way of evaluating Dy adds further uncertainties
to those already faced when determining the relative density in the laboratory. The
first attempt to correlate the blow-count of the Standard Penetration Tests (Nspr) to
the density of sands is linked to the works by Terzaghi and Peck (1948) and Gibbs
and Holtz (1957). The continuous interest in this kind of correlation is testified by the
more recent works by Skempton (1986) and Cubrinovski and Ishihara (1999). As far
as the CPT is concerned, a pioneering work can be dated back to Schmertmann
(1976). He presented the first comprehensive correlation between the cone resistance
(qc) and Dgr on the basis of static Cone Penetration Tests (CPT) performed in
Calibration Chambers (CC). Such correlation relates Dy to the effective overburden
stress (07yo) and is applicable to normally consolidated (NC) fine to medium unaged
sands. Twenty five years later, based on the results of 484 CC-CPT’s performed in
three silica sands, the writers have attempted to present similar correlations
considering the effect of CC size on the measured qc and giving appropriate
consideration to mechanically overconsolidated (OC) sands. The assessment of Dg
represents the most common intermediate step in estimating the stress-strain-strength
characteristics of sands and gravels.

In the second part of the paper, we will deal with the assessment of the peak
friction angle ¢’y of sands, making reference to the simplified Bolton’s (1986)
strength-dilatancy theory. Based on a theoretically sound framework of Rowe
(1962), the input parameters required to estimate ¢’ are: Dy, the friction angle ¢’y
at critical state and a parameter Q related to sand compressibility. The presentation
also includes a comprehensive discussion about the intrinsic parameters @’ v, Q.

Evaluation of relative density

The first attempt to correlate the penetration resistance of the cone penetration tests
(q,) to the density of sands dates back to the work by Schmertmann (1976). He
presented the first comprehensive correlation between g, and relative density (D)

on the basis of CPTs performed in the Calibration Chamber (CC). Such a correlation
is applicable to normally consolidated (NC) fine to medijum, unaged, clean sands.
Schmertmann (1976) suggested a cotrelation between the cone resistance (q.) the

relative density and the vertical effective stress (c.,), using the results of CPT's
performed on sands in the CC of the University of Florida. The analytical expression
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takes the form:
4. =C, (5., )" -exp(C, - Dy) )
G
D, =L1n{—_———q°'(°w) } @
CZ co

where: C_,C,,C, = empirical correlation factors
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Since the pioneering work by Schmertmann, many CC’s have been put into
operation in North America, Europe Australia and Japan generating a large data-base
of CPTs performed in different sands and providing a deeper insight into the merits
and limitations of this kind of large-scale laboratory test and of the empirical
correlations that can be obtained. The key points that have emerged from these
experiments can be summarised as follows:

- The analysis of the variance (Tumay 1976), performed to investigate the
relative importance of the different factors influencing the magnitude of the

q, of silica sands measured in CC tests, led to the conclusion that the relative

density (D ) and the consolidation stress tensor (i.e. the level of effective
stress existing in the specimen, prior penetration) are the most important
variables that influence q,. (Harman 1976, Schmertmann 1976, Garizio
1997).

- The correlation of q, vs. D, and o, holds only for NC sands. A correlation
for NC and OC deposits should refer to the effective mean in situ stress 6,
instead of & .

- Stress and strain history that can be reproduced in the laboratory play a
secondary role with the exception of increase of the horizontal effective
consolidation stress as result of the mechanical overconsolidation which
concurs to the value of the relevant stress tensor (Jamiolkowski et al. 1988).

- In the case of siliceous sands, their grain shape and crushability play a
secondary role (Robertson & Campanella 1983, Lunne et al. 1997). The
influence of grading on the penetration resistance has not been systematically
investigated. However, the use of the correlations obtained from CC
experiments leads to underestimation of D; in the case of sand deposits
containing more than 5 to 10 % of fines (Jamiolkowski et al. 1988)

- Thanks to the works by Dussealt and Morgenstern (1979) and Barton and
Palmer (1989) which have investigated the effect of geological time on
porosity, fabric and mechanical properties of coarse grained soil deposits, it is
obvious that the empirical correlations based on the results of tests performed
on laboratory reconstituted specimens, are applicable only in the case of
young, unaged NC soils. Skempton (1986) has shown a certain influence of
aging on the correlations between D, and the blow-count of the Standard

Penetration Test (Ng,; ). Analogously, it is reasonable to suppose that aging
influences the D vs. q, correlations (see also Wride et al. 2000).

- Due to the finite dimensions of the CC, the measured cone resistance is
affected by an error in comparison to that obtainable in the case of an infinite
sand deposit with the same relative density. This phenomenon, named
chamber size effect (Schmertmann 1976, Parkin and Lunne 1982, Baldi et al.
1986, Foray 1986, Mayne and Kulhawy 1991, Tanizawa 1992, Salgado 1993)
leads, within some boundary conditions, to an underestimate or overestimate
of the field q, depending on the boundary conditions imposed on the CC
specimen during the cone penetration. The magnitude of such an
underestimation or overestimation depends on the crushability and
compressibility of the test sand, the ratio of the CC specimen diameter (D,)
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to that of the cone (d.), D; and confining stresses applied to the CC
specimen.

- The degree of saturation and boundary conditions imposed on the CC
specimen during the cone penetration are much less influential on the q_.

The previously illustrated considerations also apply to the penetration
resistance (q,,) as obtained from blade thrust readings in the dilatometer tests
(DMT). It is worthwhile to point out that this kind of measurement is not routinely
performed in dilatometer tests (Marchetti 1980, 1997).

In light of what has been stated above, the writers propose empirical
correlations, similar to that used by Schmertmann (1976) and based on the results of
484 CC-CPT’s and 136 CC-DMT’s that have been performed in three silica sands.
As far as DMT’s are concerned, correlations between the lateral stress index K, and
D, are also shown. The practical use of the proposed correlations is the prediction
of the relative density of granular deposits. This task can be accomplished by using

the proposed correlations and keeping in mind the intrinsic limitations of such
correlations as already discussed.

Experimental Data. The CPTs and DMTs have been performed in Calibration
Chambers of ENEL of Milan and the research institute ISMES of Bergamo. The
apparatus houses 1.2 m in diameter and 1.5 m in height specimen reconstituted by
means of pluvial deposition in air (Bellotti et al. 1982, 1988, Garizio 1997, Felice
1997). After deposition, samples were subject to the one-dimensional compression in
order to apply the desired consolidation stress level and stress-history. After the
consolidation stage, the penetration test (CPT or DMT) was performed, applying to
the CC specimen one of the four available boundary conditions (BC).

Most of the tests were performed under two BC’s:

- BC-1: constant axial (c,) and radial (c,) effective stresses;
- BC-3: constant axial effective stresses (o, ) and zero radial strain (g, );

In addition, a limited number of CC tests were carried out using either BC-2
(axial strain €£,=0, o, = constant), or BC-4 (¢, = &, = 0) during the penetration
stage. Table 1 indicates the percentage of tests performed under each BC’s.

All CPT’s were performed using the cylindrical Fugro-type electrical cone
tips. In most tests, the standard cone tip 35.6 mm in diameter (Lunne et al. 1997) has
been employed. A limited number of tests were also performed using cone tips

Table 1. Percentage of CPT’s and DMT’s performed under different boundary

conditions
Test BC-1 (%) BC-2 (%) BC-3 (%) BC-4 (%)
CPT’s (total 1 20 3
484 tests) 66 _
DMT’s (total 1 1
| 136 tests) 86 0 ]
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having diameters (d,) equal to 25.4, 20, 11 and 10 mm. These tests were aimed at
investigating the influence of the CC diameter (D) to d, ratio (R,) on the q,
measured under different BC’s.

Most of the DMTs were performed using a standard dilatometer (Marchetti
1980). The probe is 14 mm thick, 95 mm wide and 220 mm high. An expandable
steel membrane, 60 mm in diameter, is located on one side of the probe; a load cell
for the measurement of the penetration resistance (q,) is located just above the
probe. Few tests were performed using a research dilatometer (RDMT) (Fretti et al.
1992, 1996, Bellotti et al. 1997). The main differences between standard dilatometer
and RDMT are: i) the expandable steel membrane of RDMT is equipped with strain
gauges, so that it is possible to monitor the complete expansion curve, ii) the
structure of the RDMT probe is much stiffer in comparison of the standard DMT,
even though the dimensions of the two probes are identical.

The CC tests were carried out in three well-known silica sands: fine to
medium Ticino (TS), Toyoura (TOS) and Hokksund (HS) sands. The index
properties of these sands are reported in Table 2 and Figure 1.

Data Interpretation

Size effect. The tests run with different cone sizes confirmed the well-known fact
that the penetration resistance measured in the CC is influenced by the imposed

Table 2. Index Properties of Test Sands

PARAMETER TICINO HOKKSUND TOYOURA
Ymax [kN/m?) 16.67 17.24 16.13
Ymin [kN/m’} 13.64 14.10 13.09
Gg [-] 2.68 2.72 2.65
Ue [-1 1.30 1.91 1.31
Dsg [mm] 0.60 0.45 0.22
Quartz [%%} 30 35 90
Feldspar [%] 65 55 8
Mica [%] ~5 ~10 ~3
dov g 33 34 32

Ymax a8nd Ymin = maximum and minimum dry density respectively
Gg = specific density
Ug = uniformity coefficient
Dsg = mean grain size
ey = friction angle at critical state
Copyright ASCE 2004 Soft Ground Construction 2001
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Figure 1. Grain size distribution of three test sands

BC’s. Such effect is inversely proportional to the R, and decreases with increasing
the sand compressibility. Further details on such effect can be found in the already
mentioned works by Schmertmann (1976), Parkin and Lunne (1982), Baldi et al.
(1986), Foray (1986), Mayne and Kulhawy (1991), Tanizawa (1992), Salgado
(1993), Salgado et al. (1998). The measured penetration resistance appears to be
independent on the BC’s when the R is sufficiently large, i.e. 70 to 100 for silica
sands of moderate to low compressibility respectively. Under these conditions the
penetration resistance measured in the CC matches the field value. The measured
penetration resistance were therefore corrected for chamber size effect by means of
the following empirical equation (Tanizawa 1992, Garizio 1997, Felice 1997):

cF=a[D'f 3)

where:

CF = correction factor by which the measured penetration resistance has to be
multiplied

a, b = empirical coefficients function of R, inferred from the CC performed in TS
and TOS using CPT tips having different size

m =+ 1 and -1 for BC-1 and BC-3 respectively.
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The values of coefficients a and b for different R, ratios are given in Table 3.
The lower bound of Dy =(Dy),.. below which CF=1 is also reported in Table 3.
The trend of the empirical CF, yielded by Eq. 3, vs. R is similar, although generally

lower, to what achieved by Salgado (1993) from numerical modelling.

The measured q,, have not been corrected to account for CC size effect. Based on
limited CC evidence, it appears that there is no need to correct the penetration
resistance of a plate blade because the experimentally determined q, is not
influenced by the finite dimensions of the chamber (Felice 1997), even though the

reasons are not well understood.

Table 3. Coefficient a and b of Eq. 3

_D¢ (DR )min
Rd - dC A B %

100 0 0 100
60 0412 0.221 55.8
47.2 0.166 0.457 50.8
33.6 0.090 0.624 474
2141 0.054 0.827 34.1
(DR )min= DR value in percent at which CF
should be taken equal to one

Proposed correlations. The writers adopted the following equations to fit the

experimental data:
1) the same equation used by Schmertmann (1976)

NG
c
q, = Cup.[p—} exp(C,D;)

from which is it possible to obtain:

Dy = 1n| —Je/Ps _
c, Co(c /p,) '
where:

q, = measured cone resistance multiplied by CF of Eq. 3

o' = an initial effective geostatic stress component or stress invariant lFL‘2 _|
Dy = relative density (as decimal)

(" tests performed in a smaller CC in Japan by Tanizawa (1992) in TOS

Soil Behavior and Soft Ground Construction

@

&)

Soft Ground Construction 2001



Downloaded from ascelibrary.org by UNIVERSITE LAVAL on 07/12/14. Copyright ASCE. For persona use only; all rights reserved.

Copyright ASCE 2004

208 SOIL BEHAVIOR AND

C,,C,,C, = non dimensional empirical correlation factors, see Table 4 for CPT’s
p, = atmospheric pressure expressed in the same unit system of stress and
penetration resistance (i.e. 98.1 kPa or 1 bar etc.)

2) the equation proposed by Lancellotta (1983)
D, =A,+B,-X 6)

where:

X= ln[——c,l"‘——}
(0,,)°

A, ,B, and a = empirical correlation factors (see Table 5). The parameter a is

obtained following an optimisation process which minimises the differences between
computed and measured values of the penetration resistance in terms of standard

deviation. In this case q, and o, are in kPa.

The same equations have been used in the case of DMT’s. The empirical
correlation factors obtained from DMT results are reported in Tables 5 & 6.

As to the definition of the effective stress o' to be introduced into Egs. 4 and
3, the following should be taken into account:
- Zolkov and Weisman (1965) postulated that N, is controlled by the
horizontal in situ effective stress (o, ).

- Similar experimental evidence emerged from CPT’s performed in CC’s
(Schmertmann 1971, 1972, Baldi et al. 1986, Houlsby and Hitchman 1988,
Mayne and Kulhawy 1991, Salgado 1993, Garizio 1997, Felice 1997). It
shows that the magnitude of the penetration resistance is much more

influenced by o, thanby o .

- The above statement suggests that any rational correlation between
penetration resistance and relative density should be related to the mean
(o) or horizontal (o,,) effective geostatic stresses rather than to the
(6.,)- The lesson learned is that the correlation between the penetration
resistance and relative density involving o, is applicable only to NC
deposits of coarse grained soils in which K, ranges from 0.4 to 0.5
remaining more or less constant with depth.

Given the above considerations, Figures 2 and 3 report the D, =f(q,,5)

correlations for NC (Fig. 2) and (NC+OC) (Fig. 3) dry silica sands respectively. As
to the latter, the writers fully appreciate the extreme difficulties linked with the

estimation of o, in sand and gravel deposits. Overall, but particularly for coarse-
grained soils, the determination of o, or of the coefficient of the earth pressure at
rest (K, ) in situ is still an unsolved problem in geotechnical engineering.
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Table 4. Coefficients C,, C1 and Co of Egs. 4 and 5 (CPT’s)

Gy

G 1 qc/p
dc =CoPa| ——| exp(CDR) DR = ——"—*——
Pa 2 ( ' ) 1
Colo /py

¢ =0, TS TS + TOS + HS

Co 17.74 17.68

C1 0.55 0.50

Cy 2.90 3.10

R 0.90 0.89

3 0.12 0.10

N 305 180
0'=0"mo TS TS + TOS + HS

Co 23.19 24,94

Ci 0.56 0.46

Ca 2.97 2.96

R 0.87 0.87

o 0.10 0.10

N 299 484

R = correlation coefficient
6 = standard error
N = number of CC tests considered

Table §. Coefficients A,B and a of eq. 6 (CPT’s & DMT’s)

209

DR =Ag +Bg - X x=1n[ de }
(cvo)*
CC test Ay By o R . N
CPT’s -1.292 0.268 0.52 0.94 7.9 456
DMT’s -1.082 0.204 0.36 0.92 6.6 100

R= Correlation coefficient

& = standard error
N = number of CC test considered
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Table 6. Coefficients C,, Cq and C9 of Eqgs. 4 and 5 (DMT’s)

g N 1 /
o
i qc =CoPa|—| exp(C2DR) DR =——Inj — 3¢ P2
2] Pa C2 ' G
S Co (0' /pa )
T
= o' =d'y TS TS + TOS + HS
o
8 Co 19.14 20.64
£ C 0.62 0.52
g [ 3.61 3.71
2 R 0.88 0.88
§' [ 0.11 0.10
2 N 57 69
5
5 ¢'=6"mo TS TS + TOS + HS
Q
&)
< Co 26.99 26.62
g C 0.60 0.49
5 Co 3.75 3.80
c
° R 0.91 0.89
< G 0.12 0.11
< N 110 136
w R = correlation coefficient
%) 6 = standard error
@ N = number of CC tests considered
=z
)
S: Nevertheless, the estimate of o in coarse-grained soils is facilitated by the
S following considerations:
g - In NC deposits the upper limit of K can be taken as 1-sin@,, (i.e. the angle
o of shearing resistance at critical state).
g - In heavily OC sands (i.e. OCR = 15) K is not greater than 1.0 as suggested
5 by the CC results (Jamiolkowski et al. 1988).
% Figures 4 & 5 show Eq. 6 in the case of CPT’s and DMT’s respectively.
< Figures 4 & 5 enable one to appreciate the accuracy of Eq. 6 to fit the experimental
§ data that are also plotted in the Figures together with the limits corresponding to

+2G.
Empirical correlations were also established between the lateral stress index
(Kp)and D;. K, is computed from DMT results in the following way:
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-u
K, = LL Q)

where:
p, = lift-off pressure

u, = pore pressure, prior to penetration and expansion
o,, = vertical effective stress, prior to penetration and expansion

The dependence of K,, on Dy is clearly shown in Figure 6 for the three
considered sands. Two different equations were used to fit the experimental data:

0 =C,(6)% pt exp(C,Dy) ®
Kp, = Aexp(BDy) ©

Eq. 8 is similar to Eq. 4 with the only difference that, instead of considering
the penetration resistance, the lateral stress index appears in the formula. Eq. 9 is
much more crude and does not take into account the stress level prior to penetration

and expansion (') . Moreover, D, is expressed as a fraction of one.
The accuracy of Eq. 8 is not influenced by the choice of the effective stress.

2
Cy=17.68; C,=0.50; C,=3.10; R =0.89

0
R 1
| \\ \\ ?\j\\-\b <100 NC
— \\ ‘\\\\‘\\/{J

2 m ~ \\\ \ T
g, j\\\\\\\\ |
s
b 4

5

6

7 DRHS%\ 1

0 200 400 600

q. (bar) (*) g, corrected for CC size effect
(1 bar = 98.1 kPa)

Figure 2. Relative density of NC siliceous sands
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2
Cy=24.94; C,=0.46; C,=2.96; R =0.87
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Figure 3. Relative density of NC and OC siliceous sands
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Figure 4. Experimental correlation Dg-g¢-6’yo for mainly NC sands of different
compressibility (Lancellotta, 1983; Garizio, 1997)
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Figure 5. Relation between wedge resistance and relative density —

Calibration chamber tests in Ticino sands (Felice, 1997)
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In Table 7 the correlation coefficients that have been obtained for the case
6 =6, (NC tests) are reported. It is worthwhile to point out that the stress exponent
assumes negative values, irrespective of the selected effective stress. It is also
important to notice that the use of a simpler formula. like Eq. 9 does not involve
relevant reduction in accuracy. In any case, the correlations between K, and D, are

less accurate than those between q, (or qp)and D, . Figure 7 shows Eq. 9 +26 and

the experimental data. The empirical correlation factors used in Figure 7 are slightly
different from those reported in Table 7 because they have been obtained
disregarding those test results with a deviation from the computed value higher than
+26.

Degree of saturation. All CPT’s and DMT’s used to derive the previously shown
correlations were carried out on dry specimens. Only a limited number of tests were
performed in saturated TS (Bellotti et al. 1988) showing little influence of the
saturation on the measured penetration resistance. Strictly speaking, these
correlations are applicable to dry fine to medium clean, unaged, uncemented silica
sands of low to moderate compressibility in which the static cone penetration process
corresponds essentially to a drained process.

In order to overcome, at least partially, the limitations derived from the above
specified condition the following indications can be helpful:

Table 7. Coefficients C,C1,C2 A,B eqs.8 and 9 (DMT’s)

' 1-C
Kp =Co(c) 1 pg ! exp(C2DR) Kp =Aexp(BDR)

Eq.8 ¢ =oyo TS TS+TOS+HS
Co 53.107° 6.6-107
Q -0.18 -0.25
Cy 2.60 2.29
R 0.78 0.76
ps 12 12
N 58 73
Eq.9 NC NC+0OC
A 0.53 0.57
B 242 2.56
R 0.71 0.71
p 13 13
N 73 136
R= Correlation coefficient
& = standard error
N = number of CC test considered
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'c = standard error
| E
0 20 40 60 80 100

Relative Density, Dy %

Figure 7. Relation between lateral stress index and relative density — Calibration
chamber tests in Ticino sands (Felice, 1997)

- The comparison between q (dry) and q,(saturated) resulting from CC-
CPT’s carried out on almost identical CC specimens of TS shows very small
differences. Similar conclusions have been reached by Schmertmann (1976)
comparing CC tests performed on dry and nearly saturated quartz Oftawa
sand. It is worthwhile to point out that the use of the previously shown
correlations in saturated sands leads to an underestimation of D, , whose
magnitude can be inferred from the following empirical relationship:

Dy (saturated) ~Dy (@) 10 _ _1 87423213 (10)
DR (dry) (c'vopa )0

The above exposed formula becomes meaningless for q. /(c,p,)"’ <2.24;

underestimation of Dy, for the sands considered in this paper, ranges between 7 and
10 %.

Aging and Cementation. As far as the effects of cementation and ageing on the
penetration resistance are concerned, currently there is a lack of information able to
estimate and quantify their influence. Schmertmann (1991) has shown that the
accumulation of secondary compression in sands tends to moderately increase the
cone resistance, see for example Kulhawy and Mayne (1990).

More relevant might be the impact of even light cementation on q_ (Puppala
1993, Puppala et al. 1995, Eslaamizzad 1997). It may be useful to mention that the
use of correlations similar to those here presented and established on freshly
deposited sands, in aged and/or cemented deposits leads to an overestimation of the
relative density.
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Evaluation of shear strength

When dealing with the shear strength of non-cemented granular materials, the
friction angle, resulting from the secant slope of the failure envelope, is, in general,
the reference parameter

for both the simplified design approaches (e.g. limit equilibrium and limit analysis
methods) and the most complex multi-surface non-linear elasto-plastic work-
hardening models.

The appropriate definition of the peak friction angle @, and the operational
friction angle (p(,p(s) referring to the simplified design approaches, appears to be even
more difficult than when more complex models of soil behaviour are used. As a
matter of fact, the operational value of @qp, for a given boundary value problem, is a
function, among the other state parameters, of all the components of stress and strain
tensors which can be reliably assessed only through sophisticated theoretical
approaches. On the other hand, using simplified design methods, the most
appropriate operational value of @y, should be theoretically evaluated with reference
to the average values of the significant state parameters within the yielding volume
of soil. This kind of evaluation, using simplified design methods, is only possible in
an approximate manner and for a limited number of the recurrent boundary values
problems in Soil Mechanics.

In light of the previous considerations, in the following part of the paper, the
basic principles governing the shear strength of sandy soils, with particular reference
to the framework and the relationships proposed by Bolton (1986), are illustrated and
partially worked out to widen the possible practical applications when simplified
models of soil behaviour are adopted. In particular, an evaluation procedure to
estimate the operational friction angle from CPT is illustrated. It allows the
evaluation of operational friction angles of sands having different mineralogical
composition and/or grain size distribution, once the point resistance q. and the mean
geostatic effective stress 0”yo are known.

Basic principles governing shear strength of sandy soils. The basic principles that
govern the shear strength of granular materials (i.e. the critical state concept, the
energy dissipation by particle rearrangement, the dilatancy and the dependency of the
latter on the current state parameters) and the influence of secondary factors such as
strain conditions and anisotropy, have already been clearly pointed out by
Casagrande (1936), Taylor (1948), Rowe (1962), Schofield & Wroth (1968), Bolton
(1986), Mitchell (1976), Lade & Lee (1976), Ladd et al. (1977) and Tatsuoka et al.
(1986). Looking at the framework and the related equations proposed by the
aforementioned researchers, the main components of shear strength of sands can be
split as follows:
- The pure frictional resistance between smooth surfaces of the sand mineral,
quantified by the interparticle friction angle @,
- The particle rearrangement component determining the strength increase
from @y, to the constant volume friction angle @cy;
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(5) Average mobilized friction angle in correspondence of the general failure for current
geotechnical boundary value problems.
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The dilation component determining the difference between the peak
strength (represented by the peak friction angle @p) and the steady state
strength corresponding to Qcv.

Based on the results of triaxial (TX) and plane strain (PS) compression tests
obtained for different sands, Bolton (1986) attempted an empirical correlation to
assess the peak friction angle that takes into account the relative density (Dg), the
mean effective stress at failure o’ns, and the sand type in terms of grain size
distribution, mineralogy and grain shape.

The equation originally proposed by Bolton (1986) can be written as follows:

9, 9o, =m{DL[Q— 0oL )]-R} P20y 1

where: @, = peak friction angle in [°]; ¢ov = constant volume friction angle [°]; m =
coefficient equal to 3 or 5 for axisymmetric (TX) and plane strain (PS) conditions
respectively; Dg - relative density; Q = particle strength parameter (reported in Table
8); o’mr = mean effective stress at failure in [kPa]; R = coefficient that in a first
approximation is a function of (¢n~-¢,) and normally it is assumed equal to 1 for
sands; ¢, = pure friction angle between smooth surfaces of the mineral forming the
considered sand.

Table 8. Q values suggested by Bolton (1986)

GRAIN MINERAL Q
Quartz and feldspar 10
Limestone
Anthracite 7
Chalk 5.5

Looking in detail at Eq. 11 it can be remarked (see also Fig. 8) that it
represents a bunch of straight-lines in the plane @; In(6’m) converging in the point
with coordinates In(6’n)=Q and @,= (¢-m-R), moreover, the angular coefficient of
the straight lines is equal to (m-Dg).

The common point of the aforementioned straight-lines is quite peculiar since
its coordinates express some intrinsic features of the considered sand not depending
on the state parameters (e.g. the typical combinations of Dy and &’ ).

In first approximation, the term (m-R) can represent the shear strength
component due to the grains rearrangement at constant volume strains (Rowe, 1962),
so it can be expressed by the difference between ¢y and @,.

The term Q can be expressed by the logarithmic function of an appropriate
equivalent grain yield stress (¢°c) that can be related to the grain crushing strength
for coarse materials (p’gn) as definied by Biliam (1967) and Marsal (1967) or can be

Soil Behavior and Soft Ground Construction

Soft Ground Construction 2001



218 SOIL BEHAVIOR AND

.

=zmR
Peak friction angle; ¢p(°)

Poy — Py

1
s 2
= <

E

0t T T T T T >
0,000t 0,001 0,01 0,1 1 10 100
0"mf

[0

Dimensionless mean effective stress at failure;

<

Figure 8. Re-plotting of Bolton’s (1986) relationships referring to pure friction angle
(p,) and dimensionless confining stress

referred to the threshold confining stress level at which, for a given sand, a single
value of void ratio is obtained independently from its initial relative density, fabric
and arrangement of the solid skeleton (see Figures 9 and 10).
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(1 bar = 98.1 kPa)

Figure 9. Isotropic compression tests on Sacramento river Sand
(from Lee and Seed, 1967)
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Figure 10. Ko-compression tests for two similar sands (from Roberts, 1964)

In order to justify this simple model from a mechanical point of view it is
possible to imagine that, when the isotropic stress level is able to destroy the internal
strength of the sand grains, the shear stress increments can be only sustained by the
pure friction mobilized between smooth surfaces of the mineral forming the grains,
then without any contribution from the particle rearrangement and, of course, from
the dilatancy.

Based on the above considerations, Eq. 11 can be rewritten, referring
explicitly to the intrinsic and state parameters influencing the peak friction angle ¢,
(see also Fig. 8):

9, -9, =m-Dy -In(c'./0,;) @0, tm 12

With reference to the silica sands considered by Bolton (1986), in order to
obtain the same resuits of Eq. 11, it is necessary to introduce the following
parameters into Eq. 12:

o’ =22026.5 (kPa);
@cv-@,= 3° for axisymmetric conditions (TX) and
Qo= 5° for plane strain conditions (PS).

As to the value of o’, it is in good agreement with the expected values
observed and/or extrapolated from the isotropic compression tests of Lee & Seed
(1967) and Robertson (1964) reported in Figs. 9 and 10.

As far as the constant volume friction angle ¢ is concerned, the
reinterpretation of the fitting parameters by Bolton (1986), under the light of the
proposed approach (Eq. 12), points out possible different values from TX and PS
conditions.

Although many authors, e.g.: Hanna et al. (1987); Schanz (1998), have
produced the experimental evidence that @ (TX) and @, (PS) are the same, the
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uncertainties linked to the large strain and strain non-uniformities still leave some
open questions with respect to this problem..

Apart the practical problems of test equipment, other sources of uncertainties,
that can influence the @, values, might also arise from the fitting procedures of the
experimental data carried out by Bolton (1986). Therefore, considering all the above
aspects, the difference of 2° between @, values from TX and PS conditions could be
easily justified and accepted, also considering the empirical nature of Eq. 12.

In order to validate the proposed modification to the original Bolton formula,
it can be interesting to note that Eq. 12 is very similar to the one proposed by Barton
(1973) to describe the curved shear strength envelope of rock joints. Moreover, the
equation by Baligh (1975, 1976), describing the curvature of the sands failure
envelope at a given relative density, can also be re-written in the form of the above
equations.

Of course the proposed simplification of the Bolton’s (1986) formula, based
on the use of the intrinsic parameters (¢, o’c) characterizing the coarse granular
media behaviour, must be validated by further experimental data. Nevertheless, it can
be used as a reference framework for analysing the basic contributions to the shear
strength of sandy soils.

Beside the intrinsic (¢, or @y and o’¢) and state (Dg and ¢’yy) parameters,
which mainly influence the shear strength of granular materials, other aspects can
also play a significant role under some specific conditions.

Among them, the first to be mentioned is the intermediate principal stress 6’
(see Fig. 11) that has been already introduced in an indirect way referring to PS and
TX strain conditions.

55°

50°

45°

40°

35°

Secant peak friction angle 9p

30°
32 34 36 38 40 42 44 46

Pre-shear porosity, n %

Figure 11. Comparison of @, (PS) with @, (TX) for a siliceous sand
(Comnforth, 1964)
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Most of the laboratory experimental data are the output of tests in the triaxial
apparatus, whereas many geotechnical structures work in plane strain conditions. It
can be, therefore, of practical interest to transform @y(TX) in @p(PS) or vice-versa, by
means of a number of empirical formulac reported in the geotechnical literature.
Lade and Lee (1976), for siliceous sands have suggested:

0p(PS)= 1.5-0(TX)-17°  0p(TX)234° (13)

Schanz & Vermeer (1996), considering the results on Hostun sand as well as
those obtained by Cornforth (1964) and Leussink (1996), for siliceous sands have
proposed:

Pp(TX)=(1/5)3@p(PS)+2¢c) 14

This latter equation is exactly the same as that which can be obtained by
equation (11) of Bolton (1986) evaluated for m=5 and m=3 in (PS) and (TX)
conditions respectively.

Both Egs. 13 and 14 hold when comparing TX and PS compression tests. A
more general handling of the problem regarding the effects of 6°; on shear strength
of granular soils must include the full range of variation of the following parameter:
b=(c',—0",)/(c',~0", ). However, the analysis of the changes of ¢, with variation of
b is beyond the scope of the present paper.

As documented in the last fifteen years by Tatsuoka and his co-workers
(Tatsuoka et al., 1986, 1990; Pradhan et al., 1988; Park & Tatsuoka, 1994), the peak
secant angle of shearing resistance shows a pronounced anisotropic response. As a
matter of fact, in addition to the value of parameter, b, the peak friction angle is also
affected by the angle, 8, existing between the direction of the major principal stress
at failure (o”;¢) and the direction of the bedding planes. The present @, anisotropy is
not usually taken into account in the interpretation of in situ tests results for strength.

The previous approaches to the assessment of the shear strength envelope of
coarse grained materials assume that there is no cohesion intercept (¢’) in terms of
effective stress.

Such statement holds even in very dense and interlocked materials as recently
argued by Schofield (1998).

However, lightly cemented coarse-grained soils are noticed within natural
formations for which a ¢’>0 intercept is a consequence of the weak bond between the
soil grains (Nader, 1983; Bachus, 1983).

The lightly cemented soil deposits generally have unconfined compressive
strength less than 100 kPa and the ¢’ resulting from drained TX compression tests
falls in a range between 5 and 30 kPa.

At present there is a lack of well consolidated methods allowing to infer both
¢’p and ¢’ from in situ tests, while some possibilities can be envisaged for SBPT
(Bachus, 1983; Carter et al., 1986).

Currently the assumption of ¢’=0 when interpreting in situ CPT and DMT
leads to an overestimate of ¢’, in case of lightly cemented sands.
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Evaluation of the peak friction angle from CPT and DMT. Nowadays the CPT and
DMT are among the tools most commonly used in design to evaluate ¢p. With this
respect two basic different approaches can be envisaged (Jamiolkowski & Lo Presti,
2000):

A. The first approach can apply to both CPT and DMT results and refers to the
use of the existing bearing capacity theories (e.g. Durgunoglu & Mitchell,
1975; Janbu & Senneset, 1974; Vesic, 1975, 1977; Salgado, 1993, Salgado
et al., 1997). In this case, the ultimate bearing capacity is measured (i.e. the
cone resistance g, in case of CPT and the wedge resistance qp in case of
DMT), therefore, the bearing capacity formula is used to estimate ¢,. The
summary of the input data required when using these approaches is shown in
Table 9. Further details can be found in the works by Mitchell & Keaveny
(1986) and Yu & Mitchell (1998).

B. The second approach consists of the in situ evaluation of Dy from the results
of the considered penetration tests. Once the Dy has been assessed, the
estimation of ¢, can be carried out by using correlations ¢,= f(Dg, grading)
like the one proposed by Schmertmann (1978), see Fig. 12 or, in a more
refined manner, by means of an iterative use of Bolton’s (1986) stress
dilatancy Eqgs. (11) and/or (12).

The main features and the use of the methods belonging to the groups A and
B are summarized in the paper of Jamiolkowski & Lo Presti (2000).

As a matter of fact, the methods for estimating @, by the bearing capacity
theories, in spite of the more elegant initial approach, require rather complex input
data and /or are affected by important limitations and approximations of the original
theoretical models so that, most of the procedures, practically applicable, must turn
to “calibrating” coefficients and/or “operational” parameters that reintroduce
empiricism into the initial equations (see for example Mitchell & Keaveny, 1986).

For such reasons the methods of group B, passing from the empirical
evaluation of Dg by CPT and DMT before the final assessment of ¢, at different
confining stress levels, can still be considered more robust, reliable, and useful for
practical applications within the current geotechnical design practice.

Referring to the ¢, assessment by the methods of the group B, once Dg has
been evaluated by means of one of the approaches outlined in the first section of this
paper, an estimate of the ¢ (TX) can be attempted with reference to Fig. 12 by
selecting the line appropriate for the gradation curve for the soil layer in question.
The main limitation which arises from the use of the functions of Fig. 12 is that @p
only refers to triaxial and direct shear (DS) tests carried out at a confining stress
range of 50<0,«<350 kPa and at a normal stress range of 80<c’y<400 kPa
respectively. Therefore, it is not possible to take into account the influence of
parameters such as: different confining stress level at failure, strain conditions and
last but not least sands characterized by different compressibility and mineralogy
from the tested ones.

In order to overcome these limitations, Egs. 11 or 12 can be used to assess
@p(TX) or @y(PS) following the procedure outlined in Fig. 13. This approach has
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Figure 12. Correlation ¢, = f(Dr Grading) (Schmertmann, 1978)

been validated for a number of siliceous sands by Bellotti et al. (1989), Jamiolkowski
(1990), Yoon (1991) and others. This method is equally conditioned by the reliability
of the Dy best estimate as that involving the use of Fig. 12, but has the advantage to
be able to take into account the stress level relevant to the considered boundary value
problem via the introduction of an appropriate value of 6’ r. The higher rationality of
this approach has, however, the limitation of a more elaborated input involving the
knowledge and/or the assumption, in addition to Dg, of two intrinsic (@, or ¢, and Q
or 6°;) and one state (0’ ) parameter.

As far as Q=Ino’, is concerned, Table 8 and 10 report respectively the values
of Q as suggested by Bolton (1986) and those resulting for a number of sands
inferred from triaxial compression tests. Table 10 associates with each value of Q
also the corresponding .. In the light of the preliminary considerations related to
the possible difference of 2° existing between ¢c(TX) and @c(PS), in the authors
opinion, the value reported in Table 10 should be considered as @c(TX). Moreover it
may be worthy to point out that the values of Q displayed apply to grains having
dimensions corresponding to those of fine to medium sands. As documented by Lee
(1992) for coarse sands and gravel particles constituted by the same mineral, Q tends
to decrease with increasing the equivalent grains diameter.

Regarding the estimate of o’ ¢ corresponding to the boundary value problem
of practical interest, the issue is far from being solved in a rigorous manner. At
present, only the following rules of thumb can be suggested to the readers:
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For shallow foundations (De Beer, 1967):

. . +3C .
O 5—%—";4—1”—(1—5m<pop) (15)

qim : limit bearing capacity of the considered shallow foundation;
¢’p : operational friction angle for qyim evaluation.

For deep foundations and penetration tests (Fleming et al., 1992):

o 20y [Ng (16)

N, : dimensionless bearing capacity factor for deep foundation, function
of @op.

L

dc Or gp }_’___4__[ o’andp’ @

® o’yporc’e & @, or Peyv

[ Dr = o, a0 I @ Function of the
boundary value
JL problem considered

( O'me @O j ® Can require iterative
approach

| 1o-Du@Ino’'m)R or l=Daln(c’do'm) |

®p =@ +tmlgp or @p=¢, +mlc

m => function of imposed stress system: 3 for TXT; 5 for PST

Q, o’ = functions of grain strength and size, see: Bolton (1986), Yoon
(1991), Lee (1992), Garizio (1997)

R => fitting parameter taken equal to 1 and function of (¢cy - @)

Figure 13. Friction angle of sand from penetration tests Bolton’s (1986)
stress-dilatancy theory
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The link between ¢’¢ and o’ nr for compression loading stress path is given
by:

. . [ 3-sin
oL ;cﬁ.[_sl&) an

As already pointed out, the method, based on the Bolton (1986) theory,
sketched in Fig. 13 has been mainly validated referring to silica sands. An attempt
has been carried out, by the writers, to extend the aforementioned procedure, for the
assessment of Dgr and then @, from q. values, to sands characterized by different
mineralogical compositions that results mainly in a different deformability under
isotropic stress increments and in different values of @y and ..

As a first step, the relationships q. - Dg, reported in Fig. 4, has been
considered. These correlations have been worked out by Lancellotia (1983) and
subsequently have been revised by Garizio (1997) for taking into account the
influence of CC dimensions, geometry and boundary conditions and referring to a
much more extended data base.

To account for the influence of different sand compressibilities, the fitting
parameters A, and B, of the equation in Fig. 4 have been evaluated for the average,
upper and lower bond respectively of the data set displayed in the same figure.

This data set is mostly related to different normally-consolidated (NC) and lightly
over-consolidated (OC) sands for which, as previously mentioned, Dg may be related
to gc through o°y,.

In order to be able to include, within the proposed procedure, the OC sands,
as a first attempt, the equation of Figure 4 has been modified as reported in Table 11,
i.e. instead of the geostatic vertical stress (6’v,) the relative density has been
expressed as a function of the mean geostatic effective stress [6mo=6"vo(1+2Kg)/3)]
and the A, value has then been transformed by using the following equation:

A=A, -B,In ’l_—_:ZK_;(_I\_IQ (18)

where Ko(NC) is the coefficient of horizontal pressure at rest for NC sands assumed,
in a first approximation, equal to 0.4.

The proposed modification of the equation of Figure 4 into the one of Table
11 does not change the results of the original correlations in the case of NC sands but
via the Kg values allows, in principle, to extend the proposed procedure to the OC
sands.

The obtained values of A’, and B, for the different mineralogical
compositions are reported in Table 11 together with the values of Q characterizing
the same kind of sands as suggested by Bolton (see also Table 8).

Substituting the equation reported in Table 11 into Egs. 11 or 12 and using
the parameters given in Table 11 and the values of @, or ., within the ranges of
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Table 12. Range of @, € ¢, values for sands of different mineralogical compositions

P Pov
Quartz sands 25° + 30° 30° + 34°
Silica sands 27° + 32° 32° + 36°
Calcareous sands 32° + 38° 36° + 42°

Table 12, the peak friction angle @p(TX) or ¢,(PS) can be evaluated for the considered sand.

Figures 14, 15 and 16 show ¢u(TX) trends, for silica, calcareous and quartz sands
respectively, evaluated by the proposed procedure and referred to a mean confining stress at failure
o’ ms equal to the geostatic mean effective stress omo. In the same figures the adopted values of @y
and Q are also reported.

The values of @,(TX) obtained from the aforementioned figures have been compared with the
estimation of the same parameter at the same confining stress levels carried out in different ways by
Durgunoglu & Mitchell (1975), Robertson & Campanella (1983) and Chen & Juang (1996), The
comparison results have pointed out a very good agreement for all the mineralogical compositions
of the considered sands.

Once the set of intrinsic and state parameters, characterising the mechanical behaviour of the
considered sand, has been assessed, it is possible to evaluate the @(TX) and/or the y(PS) values
for different confining stress levels at failure by using the Bolton (1986) Eqgs. 11 or 12 and referring
to Eqgs. 15, 16 and 17 for some typical boundary value problems. However, since 6’y is a function
of gy that in turn depends on @y, a trial and error procedure must be adopted.

P =0, +3°=34° ; Q=Ilno’.=95 ; o’ inkPa
50000 r 1 ‘ ]
9p =46° .
@, =48° / ’ /' @ @ O Omo
5 40000 / Gp=44° __ O'no=C"vo(1+2K)/3
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g / *
32 @, =40°
g 20000 / / ,/ s
'§ / / @p=38°
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/ / [ q’ = 360
| d
/ =34°
Pp
0
0 50 100 150 200 250 300

Geostatic mean effective stress, o'y (kPa)

Figure 14. Peak friction angle from CPT for silica sands using Bolton (1986) theory
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Figure 15. Peak friction angle from CPT for calcareous sands using Bolton (1986) theory
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Figure 16. Peak friction angle from CPT for quartz sands using Bolton (1986) theory
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For the estimation of qm and Ny of Eqgs. 15 and 16 it is recommended to
adopt @op=(PptPcv)/2 so as to take also into account, beyond the effect of the
curvature of the strength envelope, the influence, on the mobilized average friction
angle, of the strain level in correspondence of the limit pressure of the considered
boundary value problem (i.e. progressive failure effect).

Finally, it is worthy to recall that the proposed procedure for the estimation of
¢p and @ allows also to consider the over-consolidation ratio (OCR) of the
considered sand via the K, value. Unfortunately, at the present state of the art, the
quantification of the OCR degree and then of K, within coarse grained materials, is
still very unreliable.

Closing remarks

1. Eq. 5, referring to the empirical coefficient Co, C; and C, shown in Table 4,
allows the estimation of Dg in deposits of unaged, uncemented silica sands of
low to moderate compressibility.

2. The use of the above equations involves the effective overburden stress ¢y, in
case of NC sands but requires the estimation of the mean geostatic stress 6’mo
for QC deposits.

3. An alternative approach for the evaluation of D by Lancellotta (1983) and later
reworked by Garizio (1997) is displayed in Fig. 4. This correlation, using the
available data-base for both NC and OC sands makes reference to ¢’ v,.

4, Making reference to the above mentioned Dr = f(q,, ¢’) correlation, an iterative

approach based on the Bolton’s strength-dilatancy theory is proposed to estimate
¢@’p on the basis of the CPT results.

5. The proposed approach, at least in principle, allows evaluation, for a given sand,
of ¢’ taking into account: sand compressibility, curvilinear nature of the shear
strength envelope and imposed strain conditions.

6. Figures from 14 to 16 display the correlations ¢’y = (qc,0’mo) for three
qualitatively defined classes of sand compressibilities assuming 6’ s = 6’ mo. For
o’me different than the o’y iterative procedure outlined in Fig. 13 should be
followed.

7. A comparison between ¢’ = f(q.,0°) yielded by Fig. 14 and ¢,, obtained from
drained compression loading CK,D triaxial tests, suggests that the proposed
procedure tends to underestimate ¢’, by 1° to 1°}%, see Jamiolkowski (1990).

8. On the basis of the aforementioned approaches, an iterative procedure has been
suggested for the estimation of the operational friction angle ¢‘y, referred to
some current limit equilibrium boundary value problem. This approach allows
also to take into account, in a first approximation, the progressive failure aspect.

9. This paper gives also engineering correlations between Marchetti’s (1980)
dilatometer lateral stress index Kp, Dr and ¢’; respectively as inferred from CC
tests on siliceous sands.
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