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INTRODUCTION UDC 539.37:024.044

In the present study a system will be discussed consisting of an
homogenecus and isotropic elastic semi-infinite medium, bounded by
an infinitely rigid wall with a circular hole. For convenience, the wall
will be considered as lying horizontally. The system will be subjected
to vertical loads, acting internal to the hole and having symmetry
around its centre (see fig. 1).
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' Fig. 1. Elastic medium bounded by a rigid wall with a circular hole and subjected fo an

axially symmelric load.

It is assumed that overall contact is maintained between wall and
semi-infinite medium, which at any rate is the case if the necessary

~ stresses between the elastic medium and the wall can be transmitted,

or, as we shall see later, provided the applied loading in the hole con-
sists of normal tensions throughout. With respect to the friction along
the surface of the semi-infinite medium, it will be assumed either that
shear stresses cannot be transmitted between the elastic medium and

—
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the wall, or that the surfuce of the elaslie medivm i roastratined

with reapeet to frorizonta] meversents hoth ot the wall and al the hole.

Oy 1.’1.\1\. then, s to find the verbival displocoments of the surface
of the elastic medium within {he circular hele, and the normal stpesses
between the scemi-infinite medium and the wall. Any shear siresscs

arising between the semi-infinite medium and the wall, or horizental
movements of the surface, will, however, not be determined.

The problem is solved by first considering the load in question as
acling on the semi-infinite elastic medium without the beunding wall,
and calculating the deflections hereby produced. The normal stresses

between the elastic medium and the wall can then be determined,

In the case. where the semi-iotinite medivng has o free surface
(ease ), the displacemoents vesulting from o single foree P applied
at the point of origin and directed along the z-uxis will he (see ¢ g
TiMosHENKO [4])

o gPefaenZ s2aoml),

P (1—2?)(1+v)(;_.’_m1+ 1 1'_25)
" 2mE r C\s '

1-2v s

and in particular for z =0,

in that the deflections produced by these sfresses, and the dellee-
tions resulling from the external loading, have to cancel each other
out in the region exterior to the hole. The verlical deflections sought
can then be found as the sum of the dcflections arising from the
applied load and from the normal stresses between the wall and the
elastic medium.

It is however unneecessary to find the stresses between the elastic
medium and the wall, in order to determine the dc tions which
they produce within the hole. These deflections can in fact be expressed
direct in terms of the deﬂectmns which the same stresses produce in
the region exterior to the hole, which latter deflections are in fact

ual to these produced by the external loading, with opposite sign.

In what immediately follows, we will consider an _elastic medium
without bounding wall, and either with a completely free surface,
described as case «, or with the surface constrained w1th respect to

horizontal movements, described as case b.

We introduce cylindrical coordinates (r,f,z), so that the plane

=0 constitutes the boundary of the elastic medium, this lying on
the side of the positive z-values. The distance from the point of origin
to an arbitrary point (s, 9, z) will be designated by

5= |/r2+z2.

The displacements in the z- and r-directions will be designated w
and v respectively. As we are concerned exclusively with loads which
have symmetry about the z-axis, there will not be any displacements
in the 6-direction.

The semi-infinite medium is characterized by Young's modulus E

and Poisson’s ratio ».

p—

PO -1

- mE r’
P(1-~2v)(1 +2) 1
2:1:E r’

If the surface of the scmi-infinite medium is constrained with respec
to movenients in directions parallel to the plane z = 0 (case b), ther
the displacements resuliing from a single force P, applied as abow
at the point of origin and in the direction of the z-axis, will accordin;
to BoussiNksQ [2] be -

. P 1+w(zt
w= 4uET_( @3- 4”))
P 14w |
VT IRE1-v &’

“and in particular for z =0,

P (1+»n(@-4n1
T 4nE 1—9 r’

p=0.

To constrain the surface with respect to horizonial movements
is necessary to have the foilowin«T radial shear stresses in the surface

P 1-2v1

Tt 1y &
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The displacements resulting from s uniformly distributed line Joad
p, acting around a circle with centre at the point of origin and of radius
R, arc found by integrating the displacements from a single force.

In case ¢ we obtain W L \mL
n /'
_4(1_1») 3 dw 41— fr
We=e = T E PRK VR -psni | @k pRlg). <R
41— 7 d 4(1-v R,
— a L - p
-y = N = =
Wemo = =i PE Soi/rz—Rﬂ'sin’-’ nE Py (r) r> R
Dpemg = (O, r< R,
I-2»(1+ R
Piymg = .._(_..__._—.__-—4-——11;\ v)p—;_' r>R.
The integrals designated by K(&) are complete gllipfic integr  the

1st kind, In ease b, and with the same load as above, we have
e rm— - ‘\.\_‘

B (1+9@B-4») fr ——
Wewo = nE (1~ pK R/’ r<R,
{(1+w)(8-4v) R (
Wemo = "L E(L-9) pr‘I r)’ >R,
Uzwo = 0.

The expressions for the horizontal displacements are included only
, for the sake of completeness, for as mentioned we are interested only
in the magnitude of the vertical deflections w. Furthermore, in the
following we will be occupied only with the deflections of the surface
of the elastic medium, for which reason we will let w = w(r) signify
the deflections of the surface z = (0.

‘It will be seen that both for case « and case &, we have

w(r) = cprg(%), r<R,

w(r) = cp?lx’(%). : r>R,

e } v
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provided merely that in case a we put
. - ?

L0 ¢
ak
while in case b we put }
(14 (3-47) 3
aE(1—v)

FORMULAE FOR DEFLECTIONS AND LOAD

After these introductory considerations, we will now proceed to derive
the expression previously referred to for the deflections within a circle
of radius R,, expressed in terms of the Qgﬂgg"ﬂ'aﬁg Exlerior to this circle.
We will first let the load consist of a uniformly distributed line load p
around a circle of radius R, where R>R,, and where both circles
have their centres at the point of origin. The derivation will be carried
out in a manner completely analogous to that used by Boussesg
in [2] for the inverse case, where the load operates within a circle,
and where the deflections exterior to the cirele and the load are ex-
pressed in terms of the deflections within the circle.
We now establish

* w(l)dl
)= | 20l
. (.) LY rt
and find for r> R

nt

S“' w(l) di R 2 dl oY dew
== =p S S =
Y- AVE-12 ) YIB- Rsinfo
I kg
- cpR\*d
°p S @ S,.fl/lz—rz V12— R%*sin’w
;_; r+ Rsinw
S 21'Rsmw gr-—Rsinm'
We now put

. R
o = Arcsin -,
r

and find
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* wlhydl Tdw ¢ 2cos '3
S, /1 2 R,\ 91'R) 1-sin®gsinfw dep
L — bl
= (';—P \ dp {2 Arctg (cos fptgw)}z
“T 4o w=o

For r< R we spiit the integral

g“_a_@ dl_ \'Z g w(hdl
JE=R Ny

It

and obtain

“ w(l)dl Al i do
5_2 2=CPRS]/[2 2S ‘12 — R2 gin?
Ri'l/l -r plVE—T Y sin® w
J‘t
dl Tl
-eonffnf -
R R Tl Ty O
2
cp gdw er—Sinzm—Rsinwl/l—(%)
= " ——log : .
r S sinw r—Rsinw
2 .

In order to simplify here we put

; . Vl (r)z
— = 81Nt & ; D = Q05 &
R s R 1

*w(dl cpfr do lo sin (e —w)
SRI]/la—ré* r S sinw - sine—sinw

twhereupon

il x
=C—Eszde—m~1w——d(p
r) [Cos@+cosw

: . .
_ep LI sin (p —w) |z
Cor S sing” “sing-sinw|, _,

[
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W +
\ 1 lo 1 +sing

r ) 2sing 61 —sing

‘o

ELd
2

S

Sad(p[‘ 1 lor1+s?napsinw
2sing 1-singsinw

)

w=0
o

cos w _
dev SOT— sin? p sin? @ dp

s
Wiy ©

iyl e

ﬂ%

Arctg (tge cos w) dew \

Further, we find

b4

S w(Ddl - epR SR di Sz‘ dow
JVe-rt JAVE—12d VR - Bsino

= R dl
= cpr Szda)s _
JAVE-r YR - Psintw

o

e e 2 _ p2
=P S“.Arctg————
r rcos @

.
. Sz (%— Aretg (igo cos w)) dw
. .

r
cpm® cp 7
2 .
o dh SOArctg(tg acos w) dw,
¥
whereupon )
S whdl  cpn?
e r &’
We now take
d S” w(l) di
B i R
dr 1/ —r?

- and for r> R we obtain

99
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d ¢ wDdl dn
drrsr Ve 43 cp Aresin
__zmcp R
2 1 AR .

while for r< R we have

w0 2
E wlid 4 =2y

B c
ar ") ypsw dar P

If now r< Ry< R, we have, introducing the substitution

__B
Csinw
dw
w(r) = cp Sz e P P
SV RE-résinfw
RSR - _R d S
= X e
2
= chS o R dx
r RYx? — 1% 2 )a?- R _
L2l d (T 0d T
mlpYr—ridr T )R- R M
2¢° xdxr d {° w(Ddl

- —_— ;T .
nSRo 1[x2_r2 dx Sx V-2

This formula holds for the deflections produced by any uniformly
distributed line load zround circles of radius greater than R, and
centre at the point of origin, and must thus also hold for the deflec-
tions from any load which is symmetrical about the point of origin
and acts exterior to the circle with radius R, and centre at the point
- of origin. .

By means of a similar formula, the load can be expressed in terms
of the deflections w(l) in the loaded area. In order to derive this for-
mula, we assume once again that the load consists of a uniformly j

-k

i
|
i
LA
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distributed line load p around a circle with centre at the point of
origin and with a radius R greater than or equal to R,.
We found above that

w 0, < R,
d g w(l) dl .
—r\ == R
dx |

2 _ 2 -_-—— ————
?IVI x l Y , >R,

2_R2

and thus for r<< R we obtain

" rdx d S" w(l) di
PR

A
- = . — .
atcdy Yri—a® do

while for r> R we have .

__4_8 rde  d ,S”_L_vk(z)dl-
nlec R, VPt -t dx

2 VB —a?
- _,_4_5 rde_( mep R
med ozt 2 & l/n‘:ré—Rz)
2 i dx
= = rRS
n? le/rz_xz]/xz_ﬂz
R 2 { 1 R‘/rz—mz}
m/t } ;er R Arctg—; R
IR R
e I A ..
=P 2 P

For an arbitrary, axially symmetric load p(R), exterior to a circle

‘with centre at the point of origin and radius R,, the condition must

consequently hold that

r 1 . L

: 4 ¢ rde d w() di
R R= _ Ty —— T .
SROP( yaf nic Sﬁoi/rz_xzdxxsa ngzmxz .

By differentiation with respect to r we obtain fromn this

4 d ¢ rde d * w(hdl
PO) = = o g S—()

r /P de " ) Ea
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We have thus demonstrated the following:

If an elaslc serm-infinite medium is subjected to a load normal
to its surface and symmetric about the point of origin, and acting
exterior to a circle with centre at the point of origin and of radius R,
then the following relations hold for the load p(r) and the deflections

w(r):

4 d ¢ rdx d R“’ w(l) dl
ry= ——5 -5 —_— e, r=R s 1
p(r) e dr SROV}‘2__$2 dx 'x”/[z—xz or (1)
and
20" wde d {0 w(dl
HJ(I')=—;S —;?-_:_éa'_: S —?t(—);_—_—_, FQRO: (2)
_ g, axt—re & xl}/lz—a:z

both when the surface of the semi-infinite medium is free (case @)
and when the surface is constrained with respect to movements

paraliel to the bounding plane (case b). In (1), the constant ¢ has ‘

the values
4{1 -+ .
C == L in case a,
and
(1@ -4

ZEG =) in case b.

ELASTIC MEDIUM WITH BOUNDING WALL -

We now turn to our original system, a semi-infinite medium bounded
by the rigid wall with circular hole. By using (1) and (2), it is possible
to write down integral expressions for the normal components ¢ of
the reactions between the semi-infinite medium and the wall, and
for the deflections w internal to the hole, for any arbitrary, axially
symmetric and vertical load internal to the hole. We establish our
coordinate system with point of origin at the centre of the hole and
call the radius of the hole R,. The deflections for the load p of the
semi-infinite elastic medium without bounding wall are then

w*(r) = S:c p(R) R% Ix(gj—) dR + S'R

r

¢ p(R) K(%) dR, r<R.,

Ro

w*() = Soc p(R) R%K(R—[) dR, | 1> R,

B
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and we thus have

- 4 d¢ rde d ¢ wiQdl
22 g e oinomI T T r> R s 3
4(x) m*e dr SR., [/ 72—t de Sz V=t o G
. 9 ¢® xder d CwiDdl
= = -— —_—e —_—, < Ry . 4
w(ry = w*(r)+ > SRO o de x Sm Vo r<Ro (4)

These two formulae solve our problem, and we will now use them
on some cases of loading.

Example 1

We will first examine a vertical, single force P at the point of origin
(see fig. 2). Here we have

1
w*(l)mgPi, [=0.
/
P
= . .

t Re

Rs

q

1R

Fig. 2. Vertical reactions q and deflections w for a single foree.

w
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We insert this expression in (3) and (4), and f{ind

1
- 1 =wa1
Sx WVE=z? 2
and accordingly

x?’

1
i@f'ﬁl
dx xzygz..xz. x

The reactions ¢ then become

q(r)=i~£1’;??—sr ﬁ-f*fi—;(——l—z‘)

g 3
wic 4 rdg Vri-a?\

[V
Bo

n? dr rix
PR

atdr rR,

P R,

= e g T e —— 1’>Ro.

The deflections w become

c..1 2¢ ¢ =xdx 1
LU(I')=“4— —'{“;ZPS m(———z)

mz_rz x
nEP ——*P 1A):ccos—
4 r w4 x|,
- ¢ 1 2im r
=—p_|(1=-%2(Z. i
| 1 r(l n(). Arccos Ro))
“—PlAr s——— <R
57 cCo R r 2.

Example 2

The next example of loading will be a uniformly distributed line
joad p around a circle with centre at the point of origin and radius
R< R, (see fig. 3).

ELASTIC MEDIUM BOUNDED BY REGID WALL WITH HOLE 10
£
R
1} 1Pl .
wIRY
R; R
e
R
W
Fig. 3. Verlical reactions q and deflections w for a circular line {nad.
In this case we have
wH(l b G [>R
()"CPI \( =cp SVIZ Risinn o>
and we found earlier (page 100}
dpewsd rd ("_d S;‘E dw
- —=—=c¢pR—ax\ - —_————e
dx © Sz 1Y12—x2 PR e Sz zg/zzfxz ,VE-Risinfo
_mep R
2 x l/xz—Rz'

The reactions g therefore become

hi£5$@wnwﬂ)
9" = 2 gr rVrE-zt\ 2 x )P
2 d dx
w— T
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I

2 R

-
ré— Rg2

2 d R
= - ;Pd“““tg:l/m

- 2 VR@Z—RE
P PRy PoRE

The deflections from the reactions g become

The integrals designated by F(a, k) are elliptic integrals

kind.

The resulting deflections w become

cp (K(%) -

R/ R
P (K(;

g

)1

)

r R
R, r

)

r>Rs.

r<R

r>R

of the 1st

<R,

-y

r>R.

{
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It will be observed from the formula for the reactions g that they
have the same sign throughout, from which it is dedueed that an arbi-
trary, axially symmetric loading, which is a normal tension throughout,
must give rise to compressive stresses everywhere between wall and
semi-infinite medium.

Example 3

On the basis of the formulae for reactions and dcflections arising
from a circular line load, it is possible to find these values for any
arbitrary axially symmetric loading p(R) by integrating with- respect
to R.

We will perform here the integrations for the case where p(t) is
constant for R<a R, '(oc< 1) and zero for « Ro< R<R, that is, for a
uniformly distributed load within a circle whose centre is at the point
of origin and whose radius is « R, (see fig. 4).

11l |
™ /2

i

I

l ‘_n,.l 1
R; + A

q

1&IPL

wl'-rr'R,

Flg. 4. Vertical reactions ¢ and deflections w for a uniformly distribuled load within
a circle.
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The reactions g become

xR
° 2 R Rt — R
‘I(T)=SO _;prz—Rzl/r“—RQ dR

L Ro ——r;
P L 25 VRO dez

A YRR Vo, P
Ha xRo
m_.E.n_Iz{ o )/RF-R*+2)/F~R2 Arclg 1/{2‘1{0]
ﬂ]/rz"-ffa - R,* =D

2 1 R,
=P _ - gt . AL
T {Ro Rol/T—a2-)/r? (Amg Vrz_ o

—Aretg L/ REQ1 o ))}

I
|
|

2 1{2

2p 1-]/1_—a~

)

s - Arctg —",f;l‘-'_—' + Arctg 1;72405___

|y (O
ICER (RN

]

[r\: —
pl1oyi—a V(E)"“‘V““‘)
- e - Arctg (r 5 / - .

] =1+)1 ~u

il

T n N
V(ﬁ:) -1

In the following expression for the deflections, elliptic integrals of
the 2nd kind are involved:

[J

LR ER T
B, = | V1-F2 o, b1,

‘o]r/ 1-ux?

E(k) = E(1, k).

and

In the subsequent integration, we make use of the fact thal

bl b{er )
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and accordingly

1.1 1.1 Yi-y? y\?
SkzF(?k'k)‘“‘ ”kE(”k’k)" ¥ ‘/lp(k)’

and of the fact that

Am/l
yi- Azﬁ*'

o (BB 1)~ (1~ ) (B ) = kF(BE)+ -
and accordingly

S LF(B, ) di = E(B, k) — (1 - k%) F(B, k) +)/1 - kﬂﬁle 2

The deflections w thus become, for Ro>r>ally
ot Reo
w(r) = S | cpE(K(ﬁ) F(R—"-E)) dR
reo T r

ot Ro

O BLg(B\_ gL B\ ,E
~cpr SR_O;{K(F) F(Ra,r)}dr

-eor | f2) (- G R ol )LD
el

and for «Ro>r> 0
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" R[ /R % fp - R r ' . For an arbitrary «, the deflection at the point of origin becomes
w(r) S ep [K(—) F(Ra )] dR+S ep [K(ﬁ)—F(u—- —)] dR . :

I

R,’R —
0 r r e w(0) = cpRy (1 — /1 ~a?+a Arccos ac) )
r | S Ra ; .
= S cprB I\ R - Fl= R dlj—ﬂ cprll [Ix(—lv)—F(-Ii,E)} dr. | ; and the deflection at the edge of the loaded area becomes
Reb Ro r YRy R Ro R R !

w(aR,) = cpRy (|/1 -x?-1 +ac) .

R [R\ |.(r R R\ [r R f
)K———b—,—-—lﬂ—— Flas) - ; |
T T Ro'rp Vs o T j The results obtained above have been employed in studies by

] 1 f V. AskEGaanD [1] and 8. GRavEsEN [3] in connection with an investi-
o ' - .
+V1F(_) l/( ) _1} : gation of the measurement of pressure between an elastic medium
and a rigid wall.

B

ie]

"y

~
e e,
oy
GRS
R

I
—_—

-t
05

Ruw

Z 27 e} fe
sl SelR)- VT VT
r\R]r AR, ! of AT/ ey REFERENGES
r / Y B2 ‘ {11 ASEEGAARD, V, The measuremeni of pressure belween an infinitely rigid
= cpr{i — =t (1 - l/ 1 —(-) ) l/(—") -1 | wall and a compressible medium. Festskrift til professor Anker
Ro r ; Engelund. Meddelelse nr. 10 fra Lab. for Bygningstekn. 1959,
TR : : [2] BoussiNgsq, J. Application des potentiels. .. .Paris 1885.
ocR, El r ) aR" ( m-f__) - ]/(&) -1 Vl — 2 ; {3] GravVEsEN, 8. Elastisk halvrum begreenset af en stiv plade med cirkulzrt
koc Ro r TR, ; sternpel. Festskrift til professor Anker Engelund. Meddelelse nr. 10
i : : {ra Lab. for Bygningsteln. 1959,
-1 +W+ / Ro\? 1 1-(L : [4] TrmosueNkro, S. Theory of Elasticify., New York 1934.
] Ra {5] WarEn, C. Ef jall ao deformation { halvodndeligl eluaslisk medinm. Tek-

nisk Tidsskrift 72, 1942, p, 383-85.

SUMMARY

AY

! 2 — r r ‘ The first part of this paper deals with a semi-infinite elastic medium, subjected to an
=cpR 1- [ (1—V1—a1)+oc E -Ea . : : -
0 R, «R,

4 o R, axially symmetric load exterior to a circle. Integral expressions are derived for the load
{1) and for the deflections in the unloaded area (2) both in terms of the deflections in
the loaded area. Next an elastic medium bounded by a rigid wall with a circular hole

. . . PO ; 1 idered, and integral expressions are given for the reactions betweens wall and elastic

- g = :. for a loading p uniformly distributed 15 consigeres,

For « =1, that is to say, fo oading p M medium (3) and for the deflections inside the hole (4) for arbitrary axiaily symmetric
loading inside the hole. Formulae (3) and {4) are used on the following cases of loading:

M *;(; . }‘) %\3 a single force, a cireular line load, and a load uniformly distributed inside a circle.
e @'~ V 1 N LS

t\ . 3 — \ ‘

U () = - — Arelg ———== Y, r>Rs, - T ‘ o _

= ‘
/ l/ L ‘ b»,? uo '(Received 11th August 1959)
\ Ro . ) i )
and _

S — “ ™ ~ ~
R e ‘(, N, - X VER \f“‘ (=R

over the hole, we oblain the following simple expressions Y vy

Conlributions lo the discussion of the above paper can be sent lo the editor Hll the 28th February

2 i
r :
w(ry =cpRyl/ 1-i%] » _ r<R. , 1960, Published contribilions will be entered on the fable of conlents for the fellowing volume.
R, M (= c L ) .
BT “ G




ADDENDUM

A paper by 1. N. SNEDDON [2] which gives a solution of the problems
discussed in [1] has come to my knowledge after the printing of my
paper.

The methods used in [2] are different from those of [1] and the solu-
tion also has another form. Using the notation of (1] the normal com-
ponent of the surface displacement is given by the equation

sa-m, (7 d " xq(uR
w(r) = H12D g wde N xgl@R) g R
nE o / . F\2 Y1 -2 o .
x l #“(E—) °
Ra ]

according to formula (3.2.4.) in 2]

A solution is also given for the case where the applied pressure p .

is constant over a circular area of radius aR,(«< 1), namely:

w(r) = 2 R (1)1, (33.2) n (2],

This expression is not in agreement with the result obtained in [1]
and must be wrong. In fact, inserting ‘

JoB 0 <r<aR,
q(r)={0 .

) aR,<r<R,

in (3.2.4.) we get for ¢ ﬂ%ﬂ) o

x —_—
Sl m@dx=gﬁ E___pdx =p{1-1/1—“-2} b
Yo Vi-ax? o Yi-a? e

— 2y . 1 2
ww—ﬂ4(l EV)PRoS ﬂﬁzd&é(lm‘/l—%).
& o Vur-et' H
:

iIf now = =t and % — k we have
H e

and ‘

2 1 _ R
e —QPROS 1-yi-ee
o

nE eyr—t
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4(1 —12) Sl { W—Tﬁ . 1
we=——2"pr LRt s T T G —
P e 1-1 ( Vi-e2y1- k2t
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which is identical with the result obtained in [1]. Also for0'<g = e
we get the same equation as in {1]: ¢
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