SDMT-based site characterization and liquefaction analysis of canal levees damaged by the 2012 Emilia (Italy) seismic sequence

Laura Tonni, Guido Gottardi, Michela Marchi
University of Bologna, Italy

Luca Martelli
Regione Emilia-Romagna, Bologna, Italy

Paola Monaco, Lucia Simeoni
University of L’Aquila, Italy

Sara Amoroso
Istituto Nazionale di Geofisica e Vulcanologia, L’Aquila, Italy
The 2012 Emilia seismic sequence

Map of epicentres of earthquakes of magnitude $M_L \geq 4$ in the period 20 May – 30 June 2012

(ISIDE – Italian Seismological Instrumental and Parametric Data-Base
http://iside.rm.ingv.it)
Ground fractures and damage to structures on riverbanks (Scortichino)
"Gruppo di Lavoro Argini"

- **Working Group** (various Italian universities + Geological, Seismic & Soil Survey Regional Dept) promoted by Municipality of Bondeno, Emilia-Romagna Regional Authority in cooperation with Italian Geotechnical Society (AGI)

- **Task**: investigate causes of earthquake-induced damage, analyze seismic response of embankment, assess post-earthquake stability conditions, propose remedial measures => comprehensive site investigation program, including several in situ and laboratory tests (summary of WG results & activity: Gottardi et al. 2014, Tonni et al. 2015)

- This paper: focus on **use of SDMT results** for site characterization & liquefaction analyses
Scortichino canal levee
Selected investigated areas
Location of SDMT and other in situ tests in the four selected areas
Soil stratigraphy from boreholes

Area A

Unit AR
Embarkment

Unit C
Clay

Unit B
Silty sand and sandy silt

Unit A
Coarse sand (deep aquifer)
SDMT results

- **Material Index** (I_D)
- **Constrained Modulus** (M (MPa))
- **Undrained Shear Strength** (c_u (KPa))
- **Horizontal Stress Index** (K_D)
- **Shear Wave Velocity** (V_s (m/s))

The diagrams show the variations of these properties with depth, marked by different layers (CLAY, SILT, SAND) and locations (AR, B, C) from the bank crest to the bank toe.
p_2 pressure measured in sandy-silty layers and inferred u distribution

Units AR + B
GWT \equiv canal water level
11.16 m a.s.l.

Unit A
"Acquifero padano" GWT 7.8 m a.s.l.

Triangles: measured p_2
Dashed line: presumed u distribution in the upper sandy-silty layers (AR+B)

Circles: measured p_2
Dotted line: presumed u distribution in the lower sandy layer (A)
Stratigraphic model
Area C
(cross-section c-c')
SDMT-based liquefaction analyses

Procedure

- Simplified dynamic approach
- Liquefaction safety factor FS_{liq}
 $$FS_{liq} = \frac{CRR}{CSR} = \frac{CRR_{M=7.5} \cdot MSF}{CSR}$$
- Cyclic stress ratio CSR by ground seismic response analysis
- Cyclic resistance ratio $CRR_{M=7.5}$ from V_S and K_D by SDMT (this paper) + CPTU + Lab (CSS)
- Liquefaction potential index I_L (Iwasaki et al. 1982 + Sonmez 2003)
 $$I_L = \int_{z=0}^{z_{crit}=20m} F(z) \cdot w(z) \, dz$$
SDMT-based liquefaction analyses

Seismic input data

- **Triggering earthquake:** May 20, 2012 main shock (04:03 local time), moment magnitude $M_w = 6.1$, epicentral distance $R_{epi} = 7.5$ km
- **CSR from 1D (EERA) ground seismic response analysis** *(WG activity – Gottardi et al. 2014, Tonni et al. 2015)*

$$CSR = \frac{\tau_{av}}{\sigma'_{v0}} = \frac{0.65 \tau_{max}}{\sigma'_{v0}}$$

τ_{max} calculated using different accelerograms selected in Italian earthquake database ($M_w = 5.5-6.5$, $R_{epi} = 5-10$ km ...), scaled to PGA = 0.183 g *(no ground motion recordings available in this area)*
SDMT-based liquefaction analyses

CRR from V_S & K_D

CRR$_{M=7.5}$ from V_S
- Andrus & Stokoe (2000)
- Kayen et al. (2013)

Clean Sand

CRR$_{M=7.5}$ from K_D
- Monaco et al. (2005)
- Tsai et al. (2009)
- Robertson (2012)
SDMT A – Results of liquefaction analysis based on V_s & K_D
SDMT B – Results of liquefaction analysis based on V_S & K_D

CRR-V_S

CRR-K_D
SDMT C – Results of liquefaction analysis based on V_S & K_D
Results of liquefaction analysis based on CPTU (q_t) – SDMT (V_s & K_D) – Lab Area C

Idriss & Boulanger (2004)

Gottardi et al. (2014), Tonni et al. (2015)
Conclusions

- Liquefaction analyses by simplified methods based on K_D (SDMT), in agreement with CPTU + Lab cyclic tests, suggest that local liquefaction phenomena may have been induced by May 20, 2012 earthquake in the sandy-silty soils below the Scortichino canal levee, while methods based on V_S (SDMT) indicate no or minor liquefaction.

- Liquefaction, facilitated by groundwater in embankment core (in hydraulic connection with nearby canal), may have originated observed ground surface deformations and lateral spreading.